Logo Neuraxio/ Neuraxle
0.8.0

Contents:

  • About Neuraxle
    • Neuraxle Pipelines
      • Documentation
      • Installation
        • Examples
        • License
        • Citation
        • Contributors
        • Supported By
    • Comparison to Other Machine Learning Pipeline Frameworks, and Compatibility
      • scikit-learn
      • Apache Beam
      • spaCy
      • Kubeflow
      • TensorFlow
      • Hyperopt
    • Solutions to Scikit-Learn’s Biggest Problems
      • Definitions
      • Inability to Reasonably do Automatic Machine Learning (AutoML)
        • Problem: Defining the Search Space (Hyperparameter Distributions)
        • Problem: Defining Hyperparameters in the Constructor is Limiting
        • Problem: Different Train and Test Behavior
        • Problem: You trained a Pipeline and You Want Feedback Statistics on its Learning
      • Inability to Reasonably do Deep Learning Pipelines
        • Problem: Scikit-Learn Hardly Allows for Mini-Batch Gradient Descent (Incremental Fit)
        • Problem: Initializing the Pipeline and Deallocating Resources
        • Problem: It is Difficult to Use Other Deep Learning (DL) Libraries in Scikit-Learn
        • Problem: The Ability to Transform Output Labels
      • Not ready for Production nor for Complex Pipelines
        • Problem: Processing 3D, 4D, or ND Data in your Pipeline with Steps Made for Lower-Dimensionnal Data
        • Problem: Modify a Pipeline Along the Way, such as for Pre-Training or Fine-Tuning
        • Problem: Getting Model Attributes from Scikit-Learn Pipeline
        • Problem: You can’t Parallelize nor Save Pipelines Using Steps that Can’t be Serialized “as-is” by Joblib
    • Awesome Neuraxle
      • Contents
      • Examples & Articles
      • Courses & Training
      • Videos
      • Projects
      • Community
      • License
    • Contributing to Neuraxle
      • First steps
      • Before coding
      • Pull Requests
      • Code Reviews
      • Reviewing other’s code
      • Publishing project to PyPI
    • Code of conduct
      • Respect
      • Politeness
      • Code reviews
    • License
      • Summary of the License
  • >>> Hands-On Walkthroughs
    • Introduction
      • Encapsulate Models and Data Transformers
      • Pipe and Filter
      • Features
      • Wrapper (a.k.a. Decorator) classes
      • Pipelines for Minibatching and Parallel Processing
      • Repository for lazy data loading
      • Training your pipeline
      • Serializing your pipeline
      • Conclusion
    • Class diagrams and inheritance charts of Neuraxle objects
      • The Mixin design pattern in machine learning
      • Steps containing other steps as the composite design pattern in machine learning
      • Scikit-learn’s pipeline.Pipeline class and how to shift to parallel deep learning
        • Examples using neuraxle.pipeline.Pipeline
        • Examples using neuraxle.distributed.streaming.SequentialQueuedPipeline
      • FeatureUnion to compute steps in parallel and join their results
        • Examples using neuraxle.union.FeatureUnion
      • AutoML module to automatically tune hyperparameters of your pipelines
        • Examples using neuraxle.metaopt.auto_ml.AutoML
      • All the base classes of Neuraxle together
    • Automatic Hyperparameter Tuning / AutoML
      • AutoML loop
        • Define your problem
        • Define your pipeline
        • Choose a validation splitter
        • Define a the main scoring metric with a first MetricsCallback
        • Add other metric callbacks with MetricCallback (optional)
        • Select an hyperparams repository
        • Select an hyperparams optimizer
        • Create, and launch AutoML loop
        • Get best model and measure test accuracy
        • Additional note : model selection as an hyperparameter
    • Handler Methods
      • handle_fit_transform
      • handle_fit
      • handle_transform
      • When to use handler methods ?
      • HandleOnlyMixin
      • ForceHandleMixin
      • ForceHandleOnlyMixin
        • Examples
      • ForEach
      • ToNumpy
      • Transform Expected Outputs
      • Expand The DataContainer
      • Reversible Pipeline
    • Step Saving & Lifecycle
      • Lifecycle
      • Step Saving
        • Saver
        • Custom Saver Example
      • Saving Example
        • Pipeline
      • Full Dump Saving
      • Full Dump Loading
    • Time Series Processing Example
      • The Dataset
      • The task
      • Video dataset overview
      • Details about the input data
      • Loading the Dataset
      • Part 1 - How would you code this in a typical ML project using Scikit-learn
      • Part 2 - How to code a similar pipeline - but cleaner - using Neuraxle
    • Random Distributions
      • Plotting Each Hyperparameter Distribution
      • Discrete Distributions
        • RandInt
        • Boolean
        • Choice
        • Priority Choice
      • Continuous Distributions
        • Continuous Uniform
        • Continuous Loguniform
        • Continuous Normal
        • Continuous Lognormal
        • Continuous Normal Clipped
        • Continuous Lognormal Clipped
      • Quantized Hyperparameter Distributions
        • Quantized Uniform
        • Repaired Quantized Uniform
        • Quantized Log Uniform
        • Quantized Normal
        • Quantized Lognormal
      • Creating your own distributions
      • Using Scipy Distributions
      • Creating your own distributions using scipy
        • BaseCustomContinuousScipyDistribution
        • BaseCustomDiscreteScipyDistribution
    • REST API Serving
      • Import Packages
      • Load your Dataset
      • Create your Pipeline
      • Let’s Train and Test
      • Deploy the Pipeline
        • Write a step to decode the accepted JSON as data inputs
        • Write a step to encode the returned JSON response
        • Finally Serve Predictions
      • API Call Example
      • Next Steps
        • Pipeline Serialization
        • Data Transformation Caching
        • Checkpoints
  • >>> Practical Examples
    • AutoML
      • Usage of AutoML loop, and hyperparams with sklearn models.
    • Caching
    • REST API Model Serving
      • Easy REST API Model Serving with Neuraxle
    • Getting started
      • Inverse Transforms in Neuraxle: How to Reverse a Prediction
      • Create Nested Pipelines in Neuraxle
      • Create label encoder across multiple columns
      • Create Pipeline Steps in Neuraxle that doesn’t fit or transform
      • Create Pipeline Steps that require implementing only handler methods
    • Hyperparameters
      • Manipulate Hyperparameter Spaces for Hyperparameter Tuning
    • Parallel
      • Parallel processing in Neuraxle
    • Neuraxle hyperparameter examples
      • Boston Housing Regression
      • Boston Housing Regression with Meta Optimization
      • Time-related feature engineering with scikit-learn
        • Data exploration on the Bike Sharing Demand dataset
        • Time-based cross-validation
        • Gradient Boosting
        • Naive linear regression
        • Time-steps as categories
        • Trigonometric features
        • Periodic spline features
        • Qualitative analysis of the impact of features on linear model predictions
        • Modeling pairwise interactions with splines and polynomial features
        • Modeling non-linear feature interactions with kernels
        • Concluding remarks
        • Source
  • >>> Complete API Documentation
    • neuraxle.base
      • Neuraxle’s Base Classes
        • Examples using neuraxle.base.BaseStep
        • Examples using neuraxle.base.ExecutionContext
        • Examples using neuraxle.base.ForceHandleMixin
        • Examples using neuraxle.base.Identity
        • Examples using neuraxle.base.MetaStep
        • Examples using neuraxle.base.NonFittableMixin
        • Examples using neuraxle.base.NonTransformableMixin
    • neuraxle.pipeline
      • Neuraxle’s Pipeline Classes
        • Examples using neuraxle.pipeline.BasePipeline
        • Examples using neuraxle.pipeline.MiniBatchSequentialPipeline
        • Examples using neuraxle.pipeline.Pipeline
    • neuraxle.data_container
      • Neuraxle’s DataContainer classes
    • neuraxle.union
      • Union of Features
        • Examples using neuraxle.union.AddFeatures
        • Examples using neuraxle.union.FeatureUnion
        • Examples using neuraxle.union.ModelStacking
    • neuraxle.steps.numpy
      • Pipeline Steps Based on NumPy
        • Examples using neuraxle.steps.numpy.MultiplyByN
        • Examples using neuraxle.steps.numpy.NumpyRavel
        • Examples using neuraxle.steps.numpy.NumpyShapePrinter
        • Examples using neuraxle.steps.numpy.NumpyTranspose
    • neuraxle.steps.flow
      • Neuraxle’s Flow Steps
        • Examples using neuraxle.steps.flow.ChooseOneStepOf
    • neuraxle.steps.data
      • Data Steps
    • neuraxle.steps.column_transformer
      • Neuraxle’s Column Transformer Steps
        • Examples using neuraxle.steps.column_transformer.ColumnTransformer
    • neuraxle.steps.features
      • Featurization Steps
    • neuraxle.steps.sklearn
      • Pipeline Steps Based on Scikit-Learn
        • Examples using neuraxle.steps.sklearn.RidgeModelStacking
        • Examples using neuraxle.steps.sklearn.SKLearnWrapper
    • neuraxle.steps.loop
      • Pipeline Steps For Looping
        • Examples using neuraxle.steps.loop.FlattenForEach
        • Examples using neuraxle.steps.loop.ForEach
    • neuraxle.steps.output_handlers
      • Output Handlers Steps
        • Examples using neuraxle.steps.output_handlers.OutputTransformerWrapper
    • neuraxle.steps.misc
      • Miscelaneous Pipeline Steps
        • Examples using neuraxle.steps.misc.Sleep
    • neuraxle.hyperparams.distributions
      • Hyperparameter Distributions
        • Examples using neuraxle.hyperparams.distributions.Boolean
        • Examples using neuraxle.hyperparams.distributions.Choice
        • Examples using neuraxle.hyperparams.distributions.LogUniform
        • Examples using neuraxle.hyperparams.distributions.RandInt
    • neuraxle.hyperparams.scipy_distributions
    • neuraxle.hyperparams.space
      • Hyperparameter Dictionary Conversions
        • Examples using neuraxle.hyperparams.space.HyperparameterSpace
    • neuraxle.metaopt.auto_ml
      • Neuraxle’s AutoML Classes
        • Examples using neuraxle.metaopt.auto_ml.AutoML
    • neuraxle.metaopt.callbacks
      • Neuraxle’s training callbacks classes.
        • Examples using neuraxle.metaopt.callbacks.MetricCallback
        • Examples using neuraxle.metaopt.callbacks.ScoringCallback
    • neuraxle.metaopt.context
      • Neuraxle’s AutoML Context Management
    • neuraxle.metaopt.optimizer
      • Neuraxle’s Hyperparameter Optimizer Base Classes
    • neuraxle.metaopt.validation
      • Validation
    • neuraxle.metaopt.data.vanilla
      • Neuraxle’s Base Hyperparameter Repository Classes
    • neuraxle.metaopt.data.reporting
      • Neuraxle’s AutoML Metric Reporting classes.
    • neuraxle.metaopt.data.aggregates
      • Neuraxle’s AutoML Scope Manager Classes
    • neuraxle.metaopt.repositories.repo
      • Neuraxle’s Hyperparameter Repository Base Classes
    • neuraxle.metaopt.repositories.json
      • Neuraxle’s JSON Hyperparameter Repository Classes
        • Examples using neuraxle.metaopt.repositories.json.HyperparamsOnDiskRepository
    • neuraxle.metaopt.repositories.db
      • Neuraxle’s SQLAlchemy Hyperparameter Repository Classes
    • neuraxle.metaopt.hyperopt.tpe
      • Tree parzen estimator
    • neuraxle.distributed.streaming
      • Streaming Pipelines for Parallel and Queued Data Processing
        • Examples using neuraxle.distributed.streaming.SequentialQueuedPipeline
    • neuraxle.logging.logging
      • Neuraxle’s Logging module
    • neuraxle.logging.warnings
      • Neuraxle’s Deprecation Warnings
    • neuraxle.rest.flask
      • Neuraxle’s Flask Wrapper classes
        • Examples using neuraxle.rest.flask.FlaskRestApiWrapper
        • Examples using neuraxle.rest.flask.JSONDataBodyDecoder
        • Examples using neuraxle.rest.flask.JSONDataResponseEncoder
  • Neuraxio Blog Articles [↗️] Learn AI Programming [↗️] Jobs [↗️]
  • Neuraxio/Neuraxle
    Fork me on GitHub
    • Docs »
    • Python Module Index

    Python Module Index

    n
     
    n
    - neuraxle
    - neuraxle
        neuraxle.base
        neuraxle.data_container
        neuraxle.distributed
        neuraxle.distributed.streaming
        neuraxle.hyperparams
        neuraxle.hyperparams.distributions
        neuraxle.hyperparams.scipy_distributions
        neuraxle.hyperparams.space
        neuraxle.logging
        neuraxle.logging.logging
        neuraxle.logging.warnings
        neuraxle.metaopt
        neuraxle.metaopt.auto_ml
        neuraxle.metaopt.callbacks
        neuraxle.metaopt.context
        neuraxle.metaopt.data
        neuraxle.metaopt.data.aggregates
        neuraxle.metaopt.data.reporting
        neuraxle.metaopt.data.vanilla
        neuraxle.metaopt.hyperopt
        neuraxle.metaopt.hyperopt.tpe
        neuraxle.metaopt.optimizer
        neuraxle.metaopt.repositories
        neuraxle.metaopt.repositories.db
        neuraxle.metaopt.repositories.json
        neuraxle.metaopt.repositories.repo
        neuraxle.metaopt.validation
        neuraxle.pipeline
        neuraxle.rest
        neuraxle.rest.flask
        neuraxle.steps
        neuraxle.steps.column_transformer
        neuraxle.steps.data
        neuraxle.steps.features
        neuraxle.steps.flow
        neuraxle.steps.loop
        neuraxle.steps.misc
        neuraxle.steps.numpy
        neuraxle.steps.output_handlers
        neuraxle.steps.sklearn
        neuraxle.union

    © Copyright 2021 The Neuraxle Authors. All rights reserved. Apache License, Version 2.0.

    Privacy Policy