neuraxle.metaopt.optimizer¶
Module-level documentation for neuraxle.metaopt.optimizer. Here is an inheritance diagram, including dependencies to other base modules of Neuraxle:
Neuraxle’s Hyperparameter Optimizer Base Classes¶
Not all hyperparameter optimizers are there, but the base can be found here.
See also
Classes
|
This hyperparameter space optimizer is similar to a grid search, however, it does try to greedily sample maximally different points in the space to explore it. |
AutoML Hyperparameter Optimizer that randomly samples the space of random variables. |
-
class
neuraxle.metaopt.optimizer.
BaseHyperparameterOptimizer
[source]¶ Bases:
abc.ABC
-
find_next_best_hyperparams
(round: neuraxle.metaopt.data.reporting.RoundReport, hp_space: neuraxle.hyperparams.space.HyperparameterSpace) → neuraxle.hyperparams.space.HyperparameterSamples[source]¶ Find the next best hyperparams using previous trials, that is the whole
neuraxle.metaopt.data.aggregate.Round
.- Return type
- Parameters
round (
RoundReport
) – aneuraxle.metaopt.data.aggregate.Round
- Returns
next hyperparameter samples to train on
-
_abc_impl
= <_abc_data object>¶
-
-
class
neuraxle.metaopt.optimizer.
HyperparameterSamplerStub
(preconfigured_hp_samples: neuraxle.hyperparams.space.HyperparameterSamples)[source]¶ Bases:
neuraxle.metaopt.optimizer.BaseHyperparameterOptimizer
-
__init__
(preconfigured_hp_samples: neuraxle.hyperparams.space.HyperparameterSamples)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
find_next_best_hyperparams
(round: neuraxle.metaopt.data.reporting.RoundReport, hp_space: neuraxle.hyperparams.space.HyperparameterSpace) → neuraxle.hyperparams.space.HyperparameterSamples[source]¶ Find the next best hyperparams using previous trials, that is the whole
neuraxle.metaopt.data.aggregate.Round
.- Return type
- Parameters
round (
RoundReport
) – aneuraxle.metaopt.data.aggregate.Round
- Returns
next hyperparameter samples to train on
-
_abc_impl
= <_abc_data object>¶
-
-
class
neuraxle.metaopt.optimizer.
RandomSearchSampler
[source]¶ Bases:
neuraxle.metaopt.optimizer.BaseHyperparameterOptimizer
AutoML Hyperparameter Optimizer that randomly samples the space of random variables. Please refer to
AutoML
for a usage example.See also
Trainer
,HyperparamsRepository
,-
find_next_best_hyperparams
(round: neuraxle.metaopt.data.reporting.RoundReport, hp_space: neuraxle.hyperparams.space.HyperparameterSpace) → neuraxle.hyperparams.space.HyperparameterSamples[source]¶ Randomly sample the next hyperparams to try.
- Return type
- Parameters
round (
RoundReport
) – round report- Returns
next random hyperparams
-
_abc_impl
= <_abc_data object>¶
-
-
class
neuraxle.metaopt.optimizer.
GridExplorationSampler
(expected_n_trials: int = 0, seed_i: int = 0)[source]¶ Bases:
neuraxle.metaopt.optimizer.BaseHyperparameterOptimizer
This hyperparameter space optimizer is similar to a grid search, however, it does try to greedily sample maximally different points in the space to explore it. This space optimizer has a fixed pseudorandom exploration method that makes the sampling reproductible.
When over the expected_n_trials (if sampling too much), the sampler will turn to a non-seeded random search.
It may be good for space exploration before a TPE or for unit tests.
If the expected_n_trials is not set or set to 0, the sampler will guess its ideal sampling count and then switch to random search after that.
-
__init__
(expected_n_trials: int = 0, seed_i: int = 0)[source]¶ Initialize self. See help(type(self)) for accurate signature.
-
static
estimate_ideal_n_trials
(hp_space: neuraxle.hyperparams.space.HyperparameterSpace) → int[source]¶
-
_reinitialize_grid
(hp_space: neuraxle.hyperparams.space.HyperparameterSpace, previous_trials_hp: List[neuraxle.hyperparams.space.HyperparameterSamples]) → neuraxle.hyperparams.space.HyperparameterSamples[source]¶ Update the grid exploration sampler.
- Return type
- Parameters
round_scope – round scope
- Returns
next random hyperparams
-
find_next_best_hyperparams
(round: neuraxle.metaopt.data.reporting.RoundReport, hp_space: neuraxle.hyperparams.space.HyperparameterSpace) → neuraxle.hyperparams.space.HyperparameterSamples[source]¶ Sample the next hyperparams to try.
- Return type
- Parameters
round_scope – round scope
- Returns
next hyperparams
-
_generate_grid
(hp_space: neuraxle.hyperparams.space.HyperparameterSpace)[source]¶ Generate the grid of hyperparameters to pick from.
- Parameters
hp_space (
HyperparameterSpace
) – hyperparameter space
-
static
_pseudo_shuffle_list
(x: List[T], seed: int = 0) → list[source]¶ Shuffle a list to create a pseudo-random order that is interesting.
-
_gen_keys_for_grid
() → List[int][source]¶ Generate the keys for the grid.
- Parameters
i – index
- Returns
keys
-
_reshuffle_grid
(new_sample: OrderedDict[str, Any] = None)[source]¶ Reshuffling with pseudo-random seed the hyperparameters’ values:
-
_abc_impl
= <_abc_data object>¶
-