neuraxle.steps.features¶
Module-level documentation for neuraxle.steps.features. Here is an inheritance diagram, including dependencies to other base modules of Neuraxle:
Featurization Steps¶
You can find here steps that featurize your data.
Classes
Prebuild class to featurize 3D data into 2D data for simple classification or regression, for instance. |
|
Compute peak fft bins (int), and their magnitudes’ value (float), to concatenate them. |
-
class
neuraxle.steps.features.
FFTPeakBinWithValue
[source]¶ Bases:
neuraxle.union.FeatureUnion
Compute peak fft bins (int), and their magnitudes’ value (float), to concatenate them. This is intended to be used only after a NumpyFFT absolute step.
See also
BaseStep
,NonFittableMixin
,NumpyFFT
,Cheap3DTo2DTransformer
-
__init__
()[source]¶ Create a feature union. :param steps_as_tuple: the NamedStepsList of steps to process in parallel and to join. :param joiner: What will be used to join the features.
NumpyConcatenateInnerFeatures()
is used by default. :param n_jobs: The number of jobs for the parallelizedjoblib.Parallel
loop in fit and in transform. :param backend: The type of parallelization to do withjoblib.Parallel
. Possible values: “loky”, “multiprocessing”, “threading”, “dask” if you use dask, and more.
-
_abc_impl
= <_abc_data object>¶
-
-
class
neuraxle.steps.features.
Cheap3DTo2DTransformer
[source]¶ Bases:
neuraxle.steps.flow.ChooseOneOrManyStepsOf
Prebuild class to featurize 3D data into 2D data for simple classification or regression, for instance.
You can enable, or disable features using hyperparams :
step = Cheap3DTo2DTransformer().set_hyperparams(hyperparams={ 'FFT__enabled': True, 'NumpyMean__enabled': True, 'NumpyMedian__enabled': True, 'NumpyMin__enabled': True, 'NumpyMax__enabled': True })
See also
ChooseOneOrManyStepsOf
,NumpyFFT
,NumpyAbs
,NumpyFlattenDatum
,FFTPeakBinWithValue
,NumpyConcatenateInnerFeatures
,NumpyMean
,NumpyMedian
,NumpyMin
,NumpyMax
-
__init__
()[source]¶ Create a feature union. :param steps_as_tuple: the NamedStepsList of steps to process in parallel and to join. :param joiner: What will be used to join the features.
NumpyConcatenateInnerFeatures()
is used by default. :param n_jobs: The number of jobs for the parallelizedjoblib.Parallel
loop in fit and in transform. :param backend: The type of parallelization to do withjoblib.Parallel
. Possible values: “loky”, “multiprocessing”, “threading”, “dask” if you use dask, and more.
-
_abc_impl
= <_abc_data object>¶
-